INTEGRATION

Evaluate
a $\int_{1}^{4} \frac{2}{x^{2}} \mathrm{~d} x$,
b $\int_{0}^{2}(x-3)^{2} \mathrm{~d} x$.

The shaded region in the diagram is bounded by the curve $y=\sqrt{x^{2}+4}$, the x-axis and the lines $x=0$ and $x=6$.
a Use the trapezium rule with three intervals of equal width to estimate the area of the shaded region.
b State, with a reason, whether your answer to part a is an under-estimate or an over-estimate of the true area.

$$
\begin{equation*}
\mathrm{f}(x) \equiv 3 x^{\frac{1}{2}}-x^{-\frac{1}{2}} . \tag{2}
\end{equation*}
$$

a Find the value of $\mathrm{f}(2)$, giving your answer in the form $k \sqrt{2}$ where k is an exact fraction. (2)
b Show that $\int_{3}^{4} \mathrm{f}(x) \mathrm{d} x=12-4 \sqrt{3}$.
4

The diagram shows the curve with the equation $y=4 x^{\frac{1}{2}}-x^{\frac{3}{2}}$.
The curve meets the x-axis at the origin, O, and at the point A.
a Find the coordinates of the point A.
The curve has a maximum at the point B.
b Find the x-coordinate of the point B.
c Find the area of the shaded region enclosed by the curve and the x-axis.
5 The curve $y=4+\frac{1}{x}$ crosses the x-axis at the point $(p, 0)$ and has an asymptote $y=q$.
a Write down the values of p and q.
b Sketch the curve.
The region R is bounded by the curve $y=4+\frac{1}{x}$, the x-axis and the lines $x=1$ and $x=3$.
c Use the trapezium rule with 5 equally-spaced ordinates to estimate the area of R.

6

The diagram shows the curve with the equation $y=2 x^{2}+6 x+7$ and the straight line with the equation $4 x-y+11=0$.
a Find the coordinates of the points where the curve and line intersect.
b Find the area of the shaded region enclosed by the curve and the line.

7

The diagram shows the curve with equation $y=\frac{1}{1+\sin x},-\frac{\pi}{2}<x<\frac{3 \pi}{2}$.
a Find the coordinates of the minimum point of the curve.
b Use the trapezium rule with 2 intervals of equal width to estimate the area of the region bounded by the curve, the coordinate axes and the line $x=\frac{\pi}{3}$.
$8 \quad$ a Expand $\left(1+\frac{x}{10}\right)^{12}$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient in the expansion.
b Using your series expansion from part a, find an estimate for $\int_{0}^{1}\left(1+\frac{x}{10}\right)^{12} \mathrm{~d} x$.

9

The diagram shows the curve with the equation $y=2-x-x^{2}$ and the tangent to the curve at the point A where it crosses the y-axis.
a Find an equation of the tangent to the curve at A.
b Show that the area of the shaded region enclosed by the curve, the tangent to the curve at A and the x-axis is $\frac{5}{6}$.

