INTEGRATION

1 Evaluate

a
$$\int_{1}^{4} \frac{2}{x^{2}} dx$$
, (3)
b $\int_{0}^{2} (x-3)^{2} dx$. (4)

2

The shaded region in the diagram is bounded by the curve $y = \sqrt{x^2 + 4}$, the x-axis and the lines x = 0 and x = 6.

- a Use the trapezium rule with three intervals of equal width to estimate the area of the shaded region. (5)
- b State, with a reason, whether your answer to part a is an under-estimate or an over-estimate of the true area. (2)

$$f(x) \equiv 3x^{\frac{1}{2}} - x^{-\frac{1}{2}}.$$

a Find the value of f(2), giving your answer in the form $k\sqrt{2}$ where k is an exact fraction. (2)

b Show that
$$\int_{3}^{4} f(x) dx = 12 - 4\sqrt{3}$$
. (4)

4

The diagram shows the curve with the equation $y = 4x^{\frac{1}{2}} - x^{\frac{3}{2}}$.

The curve meets the x-axis at the origin, O, and at the point A.

a Find the coordinates of the point *A*. The curve has a maximum at the point *B*. (2)

(2)

- **b** Find the *x*-coordinate of the point *B*. (5)
- c Find the area of the shaded region enclosed by the curve and the *x*-axis. (4)

5 The curve $y = 4 + \frac{1}{x}$ crosses the x-axis at the point (p, 0) and has an asymptote y = q.

- **a** Write down the values of p and q. (2)
- **b** Sketch the curve.

The region *R* is bounded by the curve $y = 4 + \frac{1}{x}$, the *x*-axis and the lines x = 1 and x = 3.

c Use the trapezium rule with 5 equally-spaced ordinates to estimate the area of R. (5)

continued

(3)

(4)

(9)

The diagram shows the curve with the equation $y = 2x^2 + 6x + 7$ and the straight line with the equation 4x - y + 11 = 0.

- a Find the coordinates of the points where the curve and line intersect. (5)
- **b** Find the area of the shaded region enclosed by the curve and the line. (6)

7

The diagram shows the curve with equation $y = \frac{1}{1 + \sin x}$, $-\frac{\pi}{2} < x < \frac{3\pi}{2}$.

- **a** Find the coordinates of the minimum point of the curve.
- **b** Use the trapezium rule with 2 intervals of equal width to estimate the area of the region bounded by the curve, the coordinate axes and the line $x = \frac{\pi}{3}$. (5)
- 8 a Expand $(1 + \frac{x}{10})^{12}$ in ascending powers of x up to and including the term in x^3 , simplifying each coefficient in the expansion. (4)
 - **b** Using your series expansion from part **a**, find an estimate for $\int_{0}^{1} (1 + \frac{x}{10})^{12} dx$. (5)

9

The diagram shows the curve with the equation $y = 2 - x - x^2$ and the tangent to the curve at the point *A* where it crosses the *y*-axis.

- **a** Find an equation of the tangent to the curve at *A*.
- **b** Show that the area of the shaded region enclosed by the curve, the tangent to the curve at *A* and the *x*-axis is $\frac{5}{6}$.